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ON A THIN NONUNIFORM VISCOELASTIC LAYER 

A. V. Manzhirov UDC 539.376 

Problems of the action of loads on thin* nonuniform viscoelastic layers are investigated; 
two kinds of nonuniformity are taken into account. The first nonuniformity is characterized 
by the fact that the elements of the layers have different elastic and rheological proper- 
ties, and the second is caused by nonuniform aging of the material. Approximate solutions 
of the problems are found. Different particular cases are discussed. 

i. Let us consider problems of the action of loads on thin layers described by the fol- 
lowing equations of state [1-3]: 

~ i j ( x , t ) = ( t  + v ) ( l - -  L)~ 8 i f ( l -  L) ~k(x't)E ' 

t 

( I - - L )  co(x, t) co(x, t) ,[ o~(x, x) K(t--}- rt (x), "r-4-7r (x), x) d~', ' 
E -- E (t -{- x (x), x)- -  E ( T + g ( x ) ,  x) 

K(t,  T, x) = E ( t ,  x)- '~  -4-C(t, T, x) , 

E( t ,  x) [ v ] 
oij(x, t ) - -  t + v  ( I + N )  e i i ( x , t ) + 6 ~ j ~ ( I + N ) ~ k h ( x , t )  , 

t 

(I -4- N) ~o (x, t) = co (x, t) q- S o~ (x, x) R (t -4- x (x), x q- x (x), x) D~, 
Xo 

(1.1) 

where eij and o~.~. are components of the strain and stress tensors, ekk is the volume strain, 
akk/3 is the average hydrostatic pressure, E(t, x) is the modulus of the instantaneous elas- 
tic strain, x(x,, x2, xs) is the observed point of the body, t is the current time, To is 
the age of the body at the point with coordinates x(0, 0, 0) at the time the stresses are 
applied, 9 = const is the Poisson coefficient, K(t, T, x) is the creep kernel, R(t, T, x) is 
its resolvent, C(t, z, x) is the measure of the creep upon tension or compression, ~(x) is 
the nonuniform aging function, and 6ij is the Kronecker delta. 

Next we shall investigate the case of plane strain. 

Problem i. The action of a normal load q(x,, t) on a nonuniform viscoelastic thin layer 
lying without friction on a rigid base. 

It is necessary to add to the expressions (I.I) equilibrium equations, relations which 
relate the strains to the displacements, and the boundary conditions: 

~,,,i + ~,2,, = O, %2,1 Jr a2~.2 = O; (1.2) 

n, = urn, ~,~ = u~,~, ~,, = (I/2)(u,., + u~a); (I. 3) 

o,, = q(z,, t), oi, = O, z, = h, (i .4) 

u, = O, ~,2 = O, z~ = O. 

Here ux and u2 are the displacements of points of the layer, and h is its thickness. 

In order to seek an approximate solution, we shall expand the tangential stress ~x2 in- 
to a Taylor series in xa in the neighborhood of the point xa ffi 0 and restrict ourselves to 
only linear terms [4], i.e., ~,,= cp(z,, t)q-~(zl, t)z., . Then from the conditions (1.4) ox2 - O, 
a,2 - O, and from the second Eq. (1.2) with (1.4) taken into account 
*We shall consider a layer to be thin of the characteristic size of the region of its action 
loading is far greater than the layer thickness. 
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as, = q(xl, t). 

Using t h e  expressions for aaz from (i.i) and (1.5), we find 

(t - 2v) (t + v) (I - L) q (zl' t) .,, 
8e'2= t - - V  E -- i - - ~  811' 

Now substituting (i.6) into (i.i), we obtain 

v t) E a~ : ~ q (:,, + ~ (! + tO ,~i. 

(1.5) 

(1 .6 )  

(1.7) 

But from the first equilibrium equation a t ,  = ~ t  (x~, t) and 

~,  = --v(t  + v)(I -- L)q(z,,t)/E ( 1 . 8 )  

in accordance with (1.7). 

Here 9,(xa, t) ~ 0, since it is natural to assume that all the strains, stresses, and 
displacements are equal to zero when q(xx, t) ~ 0. In the following we shall immediately 
omit such functions without additional comments in similar situations. 

Formulas (1.6) and (1.8) and the conditions (1.4) with (1.3) taken into account will 
give 

xg 

o 

after which the stress--strain state of the layer is completely determined. 

_Problem 2. The action of a normal load q(xx, t) on a nonuniform viscoelastic thin layer 
bonded to a nondeformable base. 

We shall write the boundary conditions of the problem in the form 

a~a = q ( ~ , t ) ,  ~ ,  = O, z~ = h, (1 .9 )  
u,=0,  u2=0, ~ = 0 .  

Using the expansion of the tangential stress used previously, one can show t h a t  by vir- 
tue of the second condition (1.9) ~,=o~'(=,,O/(zg--h) and then 

(h - =t) ~ t) a=  = ~ *" (~1' t) + q (% 

follows from the second equilibrium equation (1.2) (we shall denote a derivative with respect 
to x, by a prime). 

Thence and from the relationships (I.I) we determined 

% = ~ q (~ ,  t) - ~ (~1, t) ~ _ , "  ~1~. 

The first equilibrium equation (1.2) leads to the formula 

E v [ (h %)" ] 
't -,.,'-' (I + ~vl 8,1 + ,  (.~,, t) + l - - - ~ ,  q ('~, t) -~ ,"  (x,..,) -_ o. 
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Taking account of the fact that for a thin layer (hfl2)~"(x,, t)~x,, t)and that the layer 
is rigldly bonded to a nondeformable base, i.e., c,, ffi 0 at x2 - 0, we obtain $(x,, t) = 
--~(I- ~)-'q(z,, t) . After this we arrive at the expressions 

%" ~ , 

% - I - ,~ q (~ '  ') '  ~ - , - "~ q (~ '  ') O -  ~-.)' 

02. .=q(x~,t), 5 x = O '  ~ : -  t - - ~ - - 2 ~  ~ ( T _ L ) ~ ,  

. X 2 

_ t - -  ~, - 2v: ~ q (x~, t) (x, t) 1 - -  ~ ,, (I - -  L) E dx~ 

by neglecting terms of order h a . 

The values of u, and e,, are easily determined from (1.3) and (i.I). 

Problem 3. The action of a tangential load T(x,, t) on a nonuniform viscoelastic thin 
layer bonded to a nondeformable base. 

For this problem we shall have the following boundary conditions: 

o .  = O, ~s = ~(~,t), ~ = h, u, = O, us ~ O, ~ ~ O, (i.i0) 

which when used along with the known expanison of the tangential stress permits obtaining 
o .  = ,(~, t)+ l'(x,, t)(=, -- h). 

From the equilibrium equations (1.2) 

o u = - l ( ' l '  ' ) '  

0 - x.)~ % .  - ~ 0 -  ~ )  " (~,, ,) - t" (~,, ') --"2~z " 

(1.n) 

As before, from (i.i) 

(l--2v)(l+v) [ $'(x,,t) 0 ]_ , (1.12) 
,,,-- ~--~: ( I - - L )  (h--x~) E -- 2;') ' l" (z,, t) ' l--~, P n; 

t _ q '  ( f + 5 ) ~ u - - ~  (x" --  h) t '  (xl '  t) + 2 t" (x*' t) + ( 1 . 1 3 )  

+ ! (x~, t) = o. 

Proceeding similarly to problem 2, we find from (1.13) 

< (~,, ') 
�9 '(x, ,  t) v( l - t -v)  x , ( l - - L ) - - . . ~ - . . - .  ( 1 . 1 4 )  !(5't) f--hl_~ ' 5,= ' 

After this we write expressions for the remaining stresses and strains to within the 
accuracy of quantities containing h a in accordance with (l.il), (1.12). (1.14), (1.3), and 
(i.i0): 

on = Iv / ( / - -v ) ]h t ' ( z l ,  t), o, ,  = t(x,, t), o= = (h --z,W(xw, t), 
~ :  = [(t + v)/(! - v)l(l  - L)[(t - -  2v)h - -  (t - -  v)2x21[~'(x,, t)/E], 

u I (x, t) = v (i -b v) x~ .I (I - -  L) [~' (z 1, t)/E l dx 1. 

If the physiocomechanical characteristics of the medium do not depend on x,, then 

u2(x,t) = , ( l  + v)x,(l - -  L)Ix(x,,O/E]. 

2 .  L e t  u s  p r o c e e d  t o  t h e  s o l u t i o n  o f  a x i s y m m e t r i c  p r o b l e m s  f o r  a l a y e r .  We s h a l l  make  
u s e  o f  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  a n d  t h e  s t a n d a r d  n o t a t i o n  f o r  i t .  I n  r e f e r e n c e s  t o  
t h e  f o r m u l a s  ( 1 . 1 )  we s h a l l  b e a r  i n  m i n d  t h a t  t h e  a p p r o p r i a t e  r e w r i t i n g  o f  t h e  n o t a t i o n  i s  
d o n e ,  a n d  i n  a d d i t i o n  x = x ( r ,  z ) ,  a n d  a l l  t h e  p h y s i c o m e c h a n i c a l  c h a r a c t e r i s t i c s  a n d  t h e  
a g i n g  f u n c t i o n  d e p e n d  o n l y  on  z ,  i . e . ,  x ffi z i n  t h e m .  The  e q u i l i b r i u m  e q u a t i o n s  and  t h e  r e -  
l a t i o n s  w h i c h  r e l a t e  t h e  s t r a i n s  and  s t r e s s e s  w i l l  t a k e  t h e  f o r m  
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~'+~ o, o~ o_ya%+~=o; 
Or Oz r = ~ -t- Oz r 

Ou u Ow t[Ou owl 

( 2 . 1 )  

( 2 . 2 )  

Problem 4, A normal load q(r, t) is acting on a thin nonuniform viscoelastic layer 
lying without friction in a rigid base. 

The boundary conditions of the problem will be 

a z = q(r,  t ) ,  Trz  = O, z =  h, 

w----- O, ~rz= O, z--- O. 
( 2 . 3 )  

In order to find an approximate solution, we shall expand the tangential stress into a 
Taylor series in the neighborhood of the point z = 0 and restrict ourselves to only linear 
terms, i.e., 

�9 t, = ~(r, t) + ~(r, t). (2.4) 

If we now take into account the boundary conditions (2.3), then we obtain ~rz = 0 and 
o z = q(r, t). Thence with account taken of the expression for o z from (l.l), we find a re- 
lation among sz, r  and Cr: 

q •  ( t - -  2v) (t ~- v) (i__ L) -- ~ - ~  (e0 -F er). 8z -- t -- 
( 2 . 5 )  

Wlth the help of (2.5) and (1.1) we obtain 

% = ~ q (,-, t) + _ (r + at) (a T + wo), 

'V E 
% = ~ q ( r ,  t ) + ~ ( Z + N ) ( % + w r ) .  

( 2 . 6 )  

Then using (2.6) and the first equilibrium equation (2.1), we determine (we shall then 
denote derivatives with respect to r with a prime) 

0 t 

e r i - -v  + w~ + ~ --r % = -- v ( l l _v  + v) (I -- L) ~ .  (2.7) 

The relationship (2.7) with account taken of the fact that (gr--80) r-l=~0 gives 

er "4- 8 o = --v(l -F v)(/ -- L) [q(r, O/EI. ( 2 . 8 )  

Substituting the expressions (2.2) into (2.8), we obtain for our search for u: 

Ou/ar -t- u/r = --v(t -[- v)(l - -  L)[q(r, t)/E]. ( 2 . 9 )  

S o l v i n g  ( 2 . 9 ) ,  we o b t a i n  

�9 (z ,  t) U~ 
r 

Prom notions of the boundedness of the displacement u at r = 0 the function r t) -= 0. 
Thence and from (2.2) and (2.6) 

u ~--- - -  V ( l  --~V) (I--  L) r - l y  q(r'E t) rdr, 

er=v(l-~-v)(I--L)rr-zCq(r't)L J E r d r - - ~ ]  

e 0 = -- v (1 -~ v) (I - -  L)~r -2 y q (r,E t) rdr, 

(;r=Vr-2 ~ q(r, t) rdr, ( ;O=V[q--r - '  ~ q(r' t)rdr]. 
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F o r m u l a s  ( 2 . 5 )  a nd  ( 2 . 8 )  and  t h e  c o n d i t i o n s  ( 2 . 3 )  p e r m i t  d e t e r m i n i n g  

~z = (t --  v ~') ( I - -  L) q (r, t) 
E ' 

z t 

S q(r't)E(t+x(z), _ ~ q(r , , )  w(r, z, t ) = ( t - - v  2) z~ = ECT+x(z),  z) K(t-t-g(z),  
0 T 0 

T -~" g (z), z) dT dz. 

Problem 5. Now let a layer be rigidly bonded to a nondeformable base; then 

Uz = q(r,t), ~rz = O,z = h, ( 2 . 1 0 )  
u = O ,  w = 0 ,  z = 0 .  

U s i n g  a s  b e f o r e  t h e  r e p r e s e n t a t i o n  ( 2 . 4 )  and  t h e  s e c o n d  c o n d i t i o n  ( 2 . 1 0 ) ,  we o b t a i n  a t  
z ffi h t h a t  T rz  ffi (z h)~ ' (r ,  t) , and  f r o m  t h e  s e c o n d  e q u i l i b r i u m  e q u a t i o n  

Substituting o z 

az=--(h2z)2.[r (r, t ) +  q~ (r. t.)] ~-q(r, t). 

from the relations (i.i) into (2.11), we find 

( 2 . 1 1 )  

(1-- 2v) ( l + v )  t ~  v ( 2 . 1 2 )  
'z = '" t -- v (I --  L) _ _  -- ~ (e 0 -~ ~r), 

W (r, z, t) = q (r, t) - -  (h 2 z)2 [q~" (r, t) -~- q~' (r, t) r - l ] .  

If we take the expression (2.12) into account in the relations (i,i) for o r and uS, we 
obtain formulas similar to (2.6), in which one should replace q(r, t) by W(r, z, t). We 
shall substitute them into the first equilibrium equation; then we find 

5 -4- ~0 = - - ( I  - -  L)[v(t  + ~)W(r, z, t)/E + (t - - v ' ) ~ ( r ,  t)/E]. ( 2 . 1 3 )  

By v i r t u e  o f  t h e  f a c t  t h a t  we h a v e  a r i g i d  s e a l ,  Cr ffi r = 0 a t  z ~ 0 .  I n  a d d i t i o n ,  
t a k i n g  i n t o  a c c o u n t  t h a t  (h2/2)[cf'(r, t )+  r t)r-l] ~. r t) f o r  a t h i n  l a y e r  . ~  t h e n  n e g l e c t i n g  
q u a n t i t i e s  o f  t h e  o r d e r  h 2,  we o b t a i n  f r o m  t h e  r e l a t i o n s h i p  ( 2 . 1 3 )  

~(r, t) = --v(t --  "r t), gr ~ SO -'~ O. ( 2 . 1 4 )  

The e x p r e s s i o n s  ( 2 . 1 4 )  and  t h e  n o t a t i o n s  o f  b o u n d e d n e s s  o f  u a t  r = 0 l e a d  t o  t h e  f o r -  
m u l a s  

u = 0 ,  8 =0, % = 0 ,  ~z----q(r,t), 

(! - 2v) (t + V) (I  - L) q (r, 0 
8z = t --V E " 

Thence with account taken of the fact that w = 0 at z = 0, we obtain 

z t 
i --  v --  2v 2 ~ q (,, t) ~ q (r, ~) 

i - - v  J E ( t ~ - - - ~ ) , z )  d E(g~-x(z),fl)  K(t-t-~(z), W (r, Z, t) 

0 gO 

-? g (z), z) d~ dz. 

Problem 6. An axisymmetric tangential load T(r, t) is acting on a layer; the layer is 
bonded to a nondeformable base. 

S i n c e  t h e  t e c h n i c a l  a s p e c t  o f  o b t a i n i n g  a p p r o x i m a t e  s o l u t i o n s  h a s  b e e n  d i s c u s s e d  i n  d e -  
t a i l  i n  t h e  p r e c e d i n g  p r o b l e m s ,  we s h a l l  g i v e  o n l y  t h e  f i n a l  r e s u l t s  h e r e :  
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t" 
Or= i--Vv bY(r, t ) - - z v r - 2 j Y ( r ,  t) rdr, 

a S - - t _  v 

, r=  V(i-}-v) ( l - -  L) E-lz[Y (r, t) -- r-2 ] y (r, t) rdr], 

= V ( t  n u v )  (I-- L) e-lzr  -2 ~ Y eO (r, t) rdr, 

t + v  . 
~, = ~ (l -- L) E-* [(i -- 2v) h -- (i -- v)2z] Y (r, t), 

u ---- V (t -~- V) (I - -  L) E - l z r  -1 ~ Y (r, t) rdr, 

Y (r, t ) = ~ '  (r, t)-{- r-l~(r, t). 

(2.15) 

The last entry in (2.15) is legitimate, since due to symmetry it is natural to assume 
that T(r, t) ~ 0 at r = 0. 

The results obtained show that in an elastic medium thin layers function under compres- 
sion as a Fuss-Winkler base with pliability coefficients equal to (i -- ~a)hE-* in problems 
1 and 4 and to (! --v- 2~)(I --v)-IAE -*~ in problems 2 and 5. When functioning under shear a thin 
film can be treated as a Fuss-Winkler base with a pliability coefficient of v(i + v)hE-* only 
in the plane case (problem 3); this is not true now for the axisymmetric case (see (2.15)). 
We obtain some operator coefficients which operate on the applied load for the corresponding 
displacements of a selected model; in problems 3-5 this is only valid when the physico- 
mechanical properties of the layer vary only with depth. 

The solutions given can be successfully used to calculate laminated bases with a com- 
plicated rheology if the characteristic size of the active loading zone of the upper layer 
is far larger than its thickness. 

We note in conclusion that the solutions of nonlinear problems for a thin layer can be 
obtained in a similar way. 

Plane problems for a thin layer under the conditions of established nonlinear creep 
were discussed in [4]. However, the algorithm proposed here permits obtaining more accurate 
solutions in the plane case (problem 3) and switching to the axisymmetric case. 

The author is grateful to N. Kh. Arutyunyan and V. M. Aleksandrov for attention to this 
paper. 
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